Lower order terms for the one-level density of elliptic curve L-functions
نویسندگان
چکیده
منابع مشابه
Lower-Order Terms of the 1-Level Density of Families of Elliptic Curves
The Katz-Sarnak philosophy predicts that statistics of zeros of families of L-functions are strikingly universal. However, subtle arithmetical differences between families of the same symmetry type can be detected by calculating lower-order terms of the statistics of interest. In this paper we calculate lower-order terms of the 1-level density of some families of elliptic curves. We show that t...
متن کاملSymmetric Powers of Elliptic Curve L-Functions
The conjectures of Deligne, Bĕılinson, and Bloch-Kato assert that there should be relations between the arithmetic of algebrogeometric objects and the special values of their L-functions. We make a numerical study for symmetric power L-functions of elliptic curves, obtaining data about the validity of their functional equations, frequency of vanishing of central values, and divisibility of Bloc...
متن کاملLower Order Terms for the Moments of Symplectic and Orthogonal Families of L-functions
We derive formulas for the terms in the conjectured asymptotic expansions of the moments, at the central point, of quadratic Dirichlet L-functions, L(1/2, χd), and also of the L-functions associated to quadratic twists of an elliptic curve over Q. In so doing, we are led to study determinants of binomial coefficients of the form det Ä( 2k−i−λk−i+1 2k−2j )ä .
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2009
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2008.12.008